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Logarithmic correction to scaling in domain-wall dynamics at Kosterlitz-Thouless
phase transitions
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With Monte Carlo simulations, we investigate the relaxation dynamics of domain walls at the Kosterlitz-
Thouless phase transition, taking the two-dimensional XY model as an example. The dynamic scaling behavior
is carefully analyzed, and a domain-wall roughening process is observed. Two-time correlation functions are
calculated and aging phenomena are investigated. Inside the domain interface, a strong logarithmic correction

to scaling is detected.
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I. INTRODUCTION

In the past years much progress has been achieved in the
study of dynamic processes far from equilibrium. For ex-
ample, the universal dynamic scaling form in critical dynam-
ics has been explored up to the macroscopic short-time re-
gime [1-9], when the system is still far from equilibrium.
Although the spatial correlation length is still short in the
beginning of the time evolution, the dynamic scaling form is
induced by the divergent correlating time around a continu-
ous phase transition. Based on the short-time dynamic scal-
ing form, new methods for the determination of both dy-
namic and static critical exponents as well as the critical
temperature have been developed [7-10]. Since the measure-
ments are carried out in the short-time regime, one does not
suffer from critical slowing down. Recent progress in the
short-time critical dynamics includes, for example, theoreti-
cal calculations and numerical simulations of the XY models
and Josephson junction arrays [11-14], magnets with
quenched disorder [15-19], aging phenomena [20-24], weak
first-order phase transitions [16,25-27], and various applica-
tions and developments [28-34].

To understand the critical dynamics far from equilibrium,
one should keep in mind that the dynamic scaling form is
dependent on the macroscopic initial condition [1,8,35]. Up
to now, the dynamic relaxation with ordered and random
initial states has been systematically investigated. The mag-
netization decays by a power law for the ordered initial state
[7.8,35], yet shows an initial increase in the macroscopic
short-time regime for the random initial state with a small
initial magnetization. An independent critical exponent x,
must be introduced to describe the scaling dimension of the
initial magnetization [1,6,8,9].

On the other hand, many recent activities have been de-
voted to the domain-wall dynamics. For magnetic materials,
a domain wall separates domains with different spin orienta-
tions. The magnetic domain-wall dynamics is an important
topic in magnetic devices, nanomaterials, and semiconduc-
tors [36-43]. For a magnetic system with weak disorder at
zero temperature, the domain wall does not propagate unless
the external magnetic field & exceeds a threshold .. This is
the so-called pinning-depinning phase transition. At the criti-
cal field &, a roughening phenomenon is also observed.
When a periodic external field h(r)=h, cos(wt) is applied
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and/or a nonzero temperature is introduced, the domain wall
exhibits different states of motion and dynamic phase transi-
tions [36,37,42—47]. Most of these works concentrate on the
stationary state at the zero or low temperatures and in re-
sponse to the external magnetic field h(r).

Very recently, the dynamic relaxation of a domain wall
has been concerned for magnetic systems at a standard order-
disorder phase transition [34,48,49]. It is described by the
relaxation dynamics starting from a semiordered state, and
shares certain common features with those around free and
disordered surfaces. Since no external magnetic fields are
added, macroscopically the domain wall does not move, but
a kind of roughening phenomenon occurs. Furthermore,
similar dynamic approaches can be applied to the pinning-
depinning and other dynamic phase transitions of domain
walls at zero or low temperatures [50], to understand the
nonstationary properties of the dynamic systems and deter-
mining the static and dynamic exponents as well as the tran-
sition points.

In this paper, we investigate the relaxation dynamics of
domain walls at a Kosterlitz-Thouless (KT) phase transition,
taking the two-dimensional (2D) XY model as an example. It
is known that the KT phase transition is topological, and
topological excitations such as the free vortices and vortex
pairs above and below the transition temperature play essen-
tial roles. Especially, logarithmic corrections to scaling
emerge, not only in equilibrium but also in the nonequilib-
rium relaxation processes [51]. Determination of the loga-
rithmic correction to scaling is theoretically important, but
practically notorious in numerical simulations. Corrections to
scaling generally depend on macroscopic initial conditions.
For example, the logarithmic correction exists in the dy-
namic relaxation starting from a disordered state, but is sup-
pressed in the dynamic relaxation starting from an ordered
state [11,24,52-54]. In this paper, we aim at understanding
the dynamic scaling form and possible corrections to scaling
in the dynamic relaxation of a domain wall.

In Sec. II, the model and scaling analysis are described,
and in Sec. III, the numerical results are presented. Section
IV includes the conclusions.

II. MODEL AND SCALING ANALYSIS

A. Model

The 2D XY model is the simplest one that exhibits a KT
phase transition. The Hamiltonian is written as
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FIG. 1. Dynamic evolution of a domain wall for the 2D XY model at the temperature 7=0.89, slightly below Tx7. The spin configuration
of the domain interface is shown in a spatial window [-32,32] at the time =0, 10 100, and 1000 (from left to rlght) Black points denote

S (0,-1) and white points denote S (0,1). The brightness of the grey points represents the y component of S

1 - -

kTH—K% Si+S;, (1)
where S;=(S;,,S;,) is a planar unit vector at the site i of a
lattice, the sum is over the nearest neighbors, and T is the
temperature. For convenience, we take the notation K=1/T.
In literature, the transition temperature 7Ty is reported to be
between 0.89 and 0.90 [55-57]. Below Tk, the system re-
mains critical. In this paper, we consider the standard Monte
Carlo dynamics, which is believed to be in the same univer-
sality class of the Langevin dynamics. Following Refs.
[11,51], we adopt the “heat-bath” algorithm of an one-spin
flip, in which a trial move is accepted with the probability
1/[1+exp(AE/T)], where AE is the energy change associ-
ated with the move.

To study the dynamic relaxation of a domain wall, we first
construct a semiordered initial state. Let us consider a rect-
angular lattice 2L X L, with the linear size 2L in the x direc-
tion and L in the y direction, and apply periodic boundary
conditions in both directions. The semiordered state is a
metastable state with a perfect domain wall, in which all

spins §i=(0, 1) on the sublattice L* at the right side and S;
=(0,-1) on the sublattice L? at the left side. We set the x axis
such that the domain wall between two domains is located at
x=0. So the x coordinate of a lattice site is a half integer.

After preparing the semiordered initial state, we update
the spins with the Monte Carlo algorithm at the temperature
T=0.89, slightly below Tk7. Since no external magnetic field
is applied, macroscopically the domain wall does not move.
As time evolves, however, the domain wall fluctuates and
creates bubbles. As a result, the domain wall roughens.
Therefore we call it a domain interface. In Fig. 1, the dy-
namic evolution of the spin configuration around the domain
wall is illustrated. Somewhat different from a standard grow-
ing interface, here the bulk evolves also in time. In analysis
of the dynamic properties of the domain interface, this must
be kept in mind.

Due to the semiordered initial state, the time evolution of
the dynamic system is inhomogeneous in the x direction.
Therefore we measure the magnetization and its second mo-
ment as functions of x and ¢,

L
- 1 -
M<’<)(r,x>=ﬁ 28,0 ) k=12, )
y=1

Here S,,(1) is the spin at time ¢ on site (x,y), L is the lattice
size, and (---) represents the statistical average. From the
symmetry of the semiordered initial state, the x component

of the magnetization is zero, i.e., MD(t,x)=(0,MV(z,x)).

We denote M(z,x) =M (¢, x) and M@ (t,x)=M?(z,x), then
define a time-dependent Binder cumulant [8,48],

U(t,x) = MP(t,x)/[M(1,x) > - 1. (3)

The Binder cumulant U(z,x) describes the fluctuation in the
y direction.

In order to directly characterize the growth of the domain
interface and its fluctuation in the x direction, we introduce a
height function and its second moment in the x direction,

L2 k

> 8,0

(L/z)k x=1

RO(f) = , k=12 (4)

Here (---) represents not only the statistic average but also
the average in the y direction. Again, we denote h'"(r)

=(0,h(r)) and K@ (r) = h®(z). Then the roughness function of
the domain interface is defined as

(1) = (1) = h(D)h(2). (5)

Except for the scaling dimension of the magnetization, the
height function measures the thickness of the domain inter-
face, while the roughness function represents its fluctuation.

To study the temporal correlation of the domain interface,
we define the two-time correlation functions
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y=1
and
C(t,t',x)=At,t',x) = M(t,x)M(t',x). (7)

A(t,t',x) includes the contribution of the magnetization
M(t,x), and C(¢,1',x) describes the pure time correlation.
From the definition, C(z,#'=0,x)=0.

B. Scaling analysis

In the critical regime, there are three spatial length scales
in the dynamic system, i.e., the nonequilibrium spatial corre-
lation length &(z), the spatial coordinate x, and the lattice size
L. In general, one may believe that &(r) is isotropic in all
spatial directions, because of the homogeneity of the interac-
tions in the Hamiltonian. Therefore general scaling argu-
ments lead to the scaling form of the magnetization and its
second moment,

M®(t,x,L) = &) MO (&) x, EG)IL), k=1,2. (8)

Here 7 is the static exponent. On the right side of the equa-
tion, the overall factor &(f)™*”? indicates the scaling dimen-
sion of M®, and the scaling function M®(&@)/x, &1) /L)
represents the scale invariance of the dynamic system. In
general, the scaling form in Eq. (8) holds already in the mac-
roscopic short-time regime, after a microscopic time scale
tmic [1’8]

For the magnetization, the scaling function
M)/ x, E(1)/L) is independent of L in the thermodynamic
limit L—cc. Then the scaling form is simplified to

M(1,x) = €1) "M (£(1)/x). &)

The Binder cumulant, however, is different. Due to &(f) <L
in the short-time regime, the spatially correlating terms in the
susceptibility M®(¢,x)—M(r,x)*> can be neglected, and it
leads to the finite-size behavior U(t,x)~1/L%" (d=2) [8].
Together with Egs. (8) and (9), one may derive the scaling
form

U(t,x) = €)' UEDN X)L, d=2. (10)

The Binder cumulant is interesting, for the static exponent 7
is not involved.

By the definition, the height function A(z) is just the mag-
netization in the positive domain. Its behavior replies on the

scaling function M (&(1)/x). In fact, one may deduce a scaling
form from Eq. (8),

h(z) = &) "*h(E(D/L). (1

Different from M(z,x), one should not ignore the dependence
of h(t) on the lattice size L, for the scaling function h(&(r)/L)
just reflects the dynamic effect of the domain interface. Simi-
lar to Eq. (11), one may also assume the scaling form for the
roughness function,
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W (1) = &0 (EQ)/L). (12)

Different from a standard growing interface, w?(f) does not
exhibit a power-law behavior of &(r), for it includes fluctua-
tions from the domain interface and the bulk.

For the time correlation functions, we may write down the
dynamic scaling forms,

A1) = E") TAEDEW), € 1). (13)

and

Clt,t',x) = &) "CED/E1), £ )1x). (14)

Since the scaling functions A and C depend on two scaling
variables, the dynamic behavior described by A(z,¢',x) and
C(z,t',x) is relatively complicated.

The purpose of this paper is to clarify the scaling forms in
Egs. (8)-(14), and especially to determine the growth law of
the nonequilibrium spatial correlation length &(¢) including
corrections to scaling.

For the critical dynamics of a continuous phase transition,
&(1) usually grows by a power law &(f)~¢'%, and z is the
so-called dynamic exponent [1,8]. In shorter times, there
may be corrections to scaling, typically in a power-law form

&) ~ V(1 + e1t). (15)

For magnetic systems with a second-order phase transition
such as the Ising model, the correction to scaling is usually
rather weak, i.e., the correction exponent b is not so small.
For magnetic systems with a KT phase transition, e.g., the
2D XY model, the correction to scaling remains weak in the
dynamic relaxation starting from an ordered state, and the
dynamic exponent is theoretically expected to be z=2 [11].
Due to the dynamic effect of the vortex-pair annihilation,
however, the correction to scaling becomes strong in the dy-
namic relaxation starting from a disordered state, and essen-
tially exhibits a logarithmic form [11,24,51,52,54],

o)~ [t/(Int+c)]"=. (16)

Theoretically, Eq. (16) is equivalent to Eq. (15) in the limit
b—0. In numerical computations, b=<0.1 may already indi-
cate a logarithmic correction to scaling. Numerically detect-
ing a logarithmic correction to scaling is rather notorious, for
it is negligible only in the limit 7— 0. In this paper, we will
show that inside the domain interface there also emerges a
logarithmic correction to scaling, attributed to the vortex-pair
annihilation.

III. MONTE CARLO SIMULATION
A. Magnetization

In Monte Carlo simulations, our main results are obtained
with L=256 and L=512 at 7=0.89, and the maximum up-
dating time is #,,=10000. Additional simulations with
L=1024 are performed up to #,,=100 000, to detect the loga-
rithmic corrections to scaling and to investigate possible
finite-size effects. The total of samples for average is 10 000.
The statistical errors are estimated by dividing the samples
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into two or three subgroups. If the fluctuation in the time
direction is comparable with or larger than the statistical er-
ror, it will be taken into account. Theoretically, the scaling
forms Egs. (8)—(12) hold after a microscopic time scale 7.
tnic 18 not universal, and relies on microscopic details of the
dynamic systems. In our simulations, ¢,,. is typically 100 or
200 Monte Carlo time steps.

The time evolution of the magnetization of the 2D XY
model starting from the semiordered state is displayed in Fig.
2(a). According to Eq. (9), let us denote s=&(z)/x. For a
sufficiently small s, e.g., x=127.5 and << 10 000, M(z,x) ap-
proaches the power-law decay at bulk. For a sufficiently
large s, e.g., x=0.5 and > 100, M(t,x) also appears to ex-
hibit a power-law behavior, but decays much faster than at

bulk. In other words, the scaling function M(s) in Eq. (9) is
characterized by

s_770/2 § — 0

~ {const s—0
M(s) ~ . (17)

Outside the interface s—0, the dynamic relaxation of the
magnetization is governed by the bulk exponent 7, while
inside the interface s— oo, it is controlled by both the inter-
face exponent 7, and the bulk exponent 7. Outside the do-
main interface, the dynamic relaxation of the magnetization
is the same as that with an ordered initial state, and the
correction to scaling is weak. Assuming &(t) ~t'%, one de-
duces M(t,x)~t"7* for s—0. In Fig. 2(a), the exponent
7/2z=0.0585(3) measured from the slope of the curve of x
=127.5 is well consistent with 7=0.234(2) and z=2 reported
in the literature [11,55]. Similarly, one derives M(z,x)
~ (7 m)2% for §— o0, One measures (7+ 7,)/2z=0.516(4)
from the slope of the curve of x=0.5, and then calculates
70/2=0.915(8) by taking z=2 as input.

For the domain interfaces of the 2D and 3D Ising models,
the exponent 7,/2=p,/v is reported to be 0.998(5) and
1.001(6), respectively, very close to 1 [49]. It indicates that
M(t,x) is an analytic function of x. For the free and disor-
dered surfaces, the exponent 3,/ v is naturally different from
1. Does the exponent n,/?2 for the domain interface of the 2D
XY model really deviate from 1? Let us first examine the
behavior M(t,x) ~x™? in the large-s regime. In Fig. 3(a),
M(t,x) is plotted as a function of x. For sufficiently large 7
and small x, M(z,x) exhibits a power-law behavior. From the
slope of the curve of t=10240, e.g., one measures 77,/2
=0.991(9), rather close to 1, and contradicting with 7,/2
=0.915(8) obtained from Fig. 2(a).

Our thought is that there exists a strong correction to scal-
ing in the growth law of &(r), described by Egs. (15) or (16).
For detecting this correction to scaling, we have performed
extra simulations up to #,,=100 000 with the lattice size L
=512 and 1024. The curve of x=0.5 is displayed in the inset
of Fig. 2(a). Careful analysis reveals that the curve can be
fitted by the power-law correction in Eq. (15) with a small
correction exponent b or equivalently by the logarithmic cor-
rection in Eq. (16). The fitting yields an exponent 7,/2
=1.01(2), consistent with 7,/2=0.991(9) obtained from Fig.
3(a).
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FIG. 2. (a) The time evolution of the magnetization of the 2D
XY model starting from the semiordered state is displayed for dif-
ferent x with solid lines on a double-log scale. Dashed lines repre-
sent the power-law fits. In the inset, a fit with the logarithmic cor-
rection to scaling is shown for x=0.5 up to a longer time #,,
=100 000. (b) The vortex number evolves with time in the dynamic
relaxation of a domain wall at x=0.5 and x=255.5, and in the dy-
namic relaxation starting from ordered and disordered states.

The logarithmic correction to scaling at the KT phase
transition is believed to be induced by the vortex-pair anni-
hilation. Therefore we measure the time evolution of the vor-
tex number for different x, in comparison with those in the
dynamic relaxation starting from ordered and disordered
states. The results are shown in Fig. 2(b). The vortex number
is defined as
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FIG. 3. (a) The magnetization of the 2D XY model starting from
the semiordered state is plotted as a function of x for different # on
a double-log scale. The dashed line shows a power-law fit. (b) The
scaling function M(E(0) /x)=M(t,x)E(1)"? is plotted as a function of
x/ &(t) on a double-log scale. Inside the domain interface, logarith-
mic corrections to scaling are taken into account, and data collapse
is observed for different x. The solid line represents the error func-
tion, and the dashed line shows a power-law fit..

), v,= 2 [0 - 602w, (18)

px,y)

v(t.x)=(Jv,

where 6; and ¢; denote the orientational angles of §; and §,
(6;— ;) are valued within [-, 7], the sum is over the four
links (i, ;) of the clockwise plaquette at site (x,y), and (- --)
represents both the statistical average and the average in the
y direction. Outside the domain interface, e.g., at x=255.5,
the vortex number is initially zero, then gradually increases
with time, and finally reaches the steady value in equilib-
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rium. This behavior is the same as that in the dynamic relax-
ation with an ordered initial state. Inside the domain inter-
face, e.g., at x=0.5, the vortex number is also initially zero,
but then rapidly jumps to a large value in a few Monte Carlo
time steps, which even exceeds that in the dynamic relax-
ation with a disordered initial state. After reaching the maxi-
mum, the vortex number then decreases slowly and relaxes
to the equilibrium. In other words, the dynamic effect of the
vortex-pair annihilation in the dynamic relaxation of the do-
main wall is similar to or even stronger than that with a
disordered initial state. Therefore it is not surprising that a
logarithmic correction to scaling emerges.

To further verify the logarithmic correction to scaling in
Eq. (16) and the scaling form in Eq. (9), we plot M(s)
=M(t,x)&(t)"? as a function of 1/s=x/&(t). According to Eq.
(9), all data of different x should collapse onto the master

curve M (s). Inside the domain interface, the data collapse is
rather sensitive to the corrections to scaling. Therefore our
strategy is to determine the constant ¢ in Eq. (16) by search-
ing for the best data collapse, with 7=0.234 and z=2 as

input. This is shown in Fig. 3(b). Clearly, M(s) — const when

s—0, while M(s)— s~ when s — . From the slope of the
curve in large-s regime, we obtain 7,/2=0.990(9), in agree-
ment with the measurements in Figs. 2(a) and 3(a). We may
also apply the power-law correction in Eq. (15) to the data
collapse. It yields a correction exponent b=~ (.05, consistent
with the logarithmic correction in Eq. (16). Here we should
mention that it is relatively difficult to observe the logarith-
mic correction simply from the time evolution of the magne-
tization at a fixed x in Fig. 2(a). However, the data collapse
in Fig. 3(b) involves the dependence of the magnetization on
both x and ¢, and therefore it is more efficient in detecting the
logarithmic correction to scaling.

Additionally, we find that the scaling function M(s) can
be fitted to the error function f(y) ~ [ exp(—x?)dx, as shown
in Fig. 3(b). In fact, this scaling function is rather robust, and
it also applies to the domain interfaces of the 2D and 3D
Ising models. It is a challenge to theoretically derive the
scaling form and scaling function. Detailed results of this
kind will be reported elsewhere.

B. Binder cumulant and height function

To clarify the scaling form of the Binder cumulant in Eq.
(10), we plot U(z,x) as a function of 7 for different x in Fig.
4(a). Outside the interface, e.g., x=127.5, a power-law be-
havior is observed, and the slope of the curve is 0.503(9).
Assuming &(r) ~1'", one derives U(r,x)~ 1“"V% Therefore
we obtain z=1.99(4), consistent with the theoretical value
z=2. Inside the domain interface, e.g., x=0.5, U(t,x) looks
like exhibiting also a power-law behavior, and the slope of
the curve is 1.382(10). Therefore it suggests

~ const s—0
U(s) ~ o . (19)

§—

Assuming &) ~1'"%, one derives U(r)~ %1+ From
(d-1+dy)/z=1.382(10), one calculates d,=1.764(20), sig-
nificantly different from 2. For the 2D and 3D Ising models,
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FIG. 4. (a) The Binder cumulant of the 2D XY model starting
from the semiordered state is displayed for different x with solid
lines on a double-log scale. Dashed lines represent the power-law
fits. In the inset, the scaling function U(&(r)/x)=U(t,x)/ &) is plot-
ted as a function of &(r)/x. Inside the domain interface, logarithmic
corrections to scaling are taken into account. (b) Height functions of
the domain interface, bulk, and pure domain interface are displayed
on a double-log scale. For clarity, the curve of DA(z) is shifted up by
a factor of 5. Dashed lines show the power-law fits, and circles
indicate a fit with a logarithmic correction to scaling.

d, are estimated to be 2.00(2) and 2.01(2), respectively, very
close to 2. The analysis above for the magnetization can be
similarly applied to the Binder cumulant, and leads to the
logarithmic correction to scaling in Eq. (16). The data col-

lapse of U(s) is shown in the inset of Fig. 4(a). From the
slope of the curve in the large-s regime, one extracts d
=1.991(11), close to 2.
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From the definition, our height function A(f) just repre-
sents the thickness of the domain interface, and its scaling
behavior is similar to that of () in Eq. (12). Therefore we
simply focus on the height function A4(z). In Fig. 4(b), h(z) of
the domain interface decreases faster than a power law. Ac-
tually, the curve can be fitted by a double power law, e.g.,
h(t)=cyt?—c,t’1. The conjecture is that the term c,*1 de-
scribes the pure interface, and c,t” represents the magneti-
zation of the bulk. Let us denote the magnetization of the
bulk by h,(t), and assume that it can be simulated by the
dynamic relaxation of the magnetization starting from an or-
dered state (i.e., without the domain wall). In Fig. 4(b), one
observes that /,,(¢) decays by a power law, and the slope of
the curve is 0.0588(4), consistent with that in the literature
[11].

Now we define the pure height function for the domain
interface by subtracting the contribution from the bulk,

Dh(t,L) = hy,(t) — h(z). (20)

In Fig. 4(b), one observes that Dh(t,L) looks like exhibiting
a power-law behavior. The slope of the curves is estimated to
be 0.410(9). In other words, one may assume

~ {c bulk
h(u) = , (21)

c+u® domain interface
with u=&(r)/L. Then one derives
Dh(t,L) = &) "L, (22)

Taking into account that the scaling dimension of the mag-
netization is —7/2, « is nothing but the roughness exponent
of the domain interface. Assuming &(f) ~t''%, one calculates
the exponent a=0.938(18) from (a—#%/2)/z=0.410(9). This
value disagrees with a=1 estimated from Dh(¢,L)~ L™*. For
the 2D and 3D Ising models, « is also very close to 1. Again
this suggests the existence of the logarithmic correction to
scaling in Eq. (16). After introducing the logarithmic correc-
tion to scaling, one obtains a refined value (a—7/2)/z
=0.438(4), then derives @=0.994(8), close to 1.

C. Aging phenomena

The complication of the dynamic scaling forms of the
time correlation functions in Egs. (13) and (14) arises in two
folds: there are two independent scaling variables and there
exist strong corrections to scaling. According to the proce-
dure in Refs. [24,48], one may fix the scaling variable s’
=¢&(')/x at certain values, and plot A(z,t',x)&(¢')” and
C(t,t',x)&(t")" as functions of &(r)/&(t'). If the dynamic
scaling forms hold, the data of different " and x with a fixed
s" should collapse. This actually is a kind of aging phenom-
ena. If the correction to scaling is negligible, i.e., &(t) ~1",
the above performance is relatively straightforward. For ex-
ample, it has been partially carried out for the 2D Ising mod-
els [48]. If the correction to scaling is strong, one should first
determine the growth law &(r). Otherwise, the correlation to
scaling of &(r) may mix with the deviation of the scaling
function A and C from the power laws, and the analysis of

the dynamic scaling behavior becomes complicated
[24,53,54].
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Direct measurements of &(¢) from the spatial correlation
function is somewhat difficult. Fortunately, our &(r) has been
accurately determined from the time evolution of the magne-
tization in Sec. III A. Inside the domain interface, there is a
strong logarithmic correction to scaling. Outside the domain
interface, the correction to scaling is in a power-law form
described by Eq. (15) with b=1, and practically rather weak,
more or less negligible. In Fig. 5(a), the scaling function
A(t,t',x)&@1')7 is displayed for two typical values of s’. Ob-
viously, data collapse is observed. The small value s’
=0.143 shows the dynamic behavior of the bulk, i.e., outside
the domain interface, while the “large” value s’ =0.603 rep-
resents that inside the domain interface. Naively s'=0.603
looks not so large because of the logarithmic correction in
Eq. (16). Actually the data are obtained with large ¢’ and
small x.

Let us denote r=£&(r)/ &(t"). Theoretically, in the large-r

limit, the scaling function A(r,s’) should approach r~7? at
the bulk, and (72 inside the domain interface [24,48]. In

the medium-r regime, the scaling function A shows deviation
from power laws. Careful analysis leads to the form

i ,) 72 (1 +¢'1r?)
(rs7) = (1 4 ¢! /r)

bulk
inside interface
(23)

Fitting the above ansatz to the data in Fig. 5(a), we estimate
7/2=0.115(6) and (7+17,)/2=1.119(5), consistent with
7/2=0.117(1) and (7+7,)/2=1.114(7) obtained from the
magnetization in Sec. IIIl A. At the bulk, the deviation of

/Y(r,s’) from a power law is described by the term ¢’/ r2, and
it agrees with that in Ref. [24]. On the other hand, this term
is reported to be ¢’/r for the dynamic relaxation with a dis-

ordered initial state [24]. Therefore A(r,s’) inside the do-
main interface approaches the power-law limit in a similar
form as that with a disordered initial state, but slower than
that with an ordered initial state.

After subtracting the contribution of the magnetization
from A(z,t',x), C(z,1',x) describes the pure time correlation.
At the bulk, C(t,t',x)&(t")" does show data collapse. This is
displayed with s'=0.143 in Fig. 5(b). Since C(z,t',x) decays
rapidly with time, the data in Fig. 5(b) are relatively fluctu-
ating. But we could still observe a power-law tail. Theoreti-

cally, one could expect C(r,s’) ~ @72 at the bulk in the
large-r regime. From the slope of the curve, one estimates
d+m/2=2.13(9), consistent with d=2 and #%/2=0.117(1)
measured from the magnetization.

The dynamic behavior of C(z,t",x) inside the domain in-
terface is somewhat subtle. As shown in Fig. 5(b), the data of
t'up to 320 with s'=0.603 do not collapse. However, all
curves appear to be in a similar form. Possibly, an extra
correction to scaling has not been under control. Anyway, we

could fit the curves with the ansatz C(r,s')~r1+c'/r),
and extract N\=0.862(8). This exponent is different from
A=1.476(10) in the dynamic relaxation with a disordered
initial state [11,24]. Further understanding of the dynamic
behavior of C(¢,1',x) remains open.
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FIG. 5. (a) The scaling function A(E@) &1t ,s")
=A(t,t' ,x)&(t")7 with a fixed s"=&(t")/x is plotted as a function of
&)/ &(t') on a double-log scale. Inside the domain interface, loga-
rithmic corrections to scaling are taken into account. Solid lines
represent the fits with Eq. (23). (b) The scaling function
C(&t)1E(1),s")=C(t,1" ,.x) &) with a fixed s’ =&(1")/x is plotted
as a function of &(r)/&(z') on a double-log scale. Inside the domain
interface, logarithmic corrections to scaling are taken into account,
but data collapse is not observed. The dashed line shows a power-
law fit, and the solid line represents a fit with C(r,s")~r M1
+c'/r).

IV. CONCLUSION

In summary, we have simulated the dynamic relaxation of
domain walls at the KT phase transition of the 2D XY model
with Monte Carlo methods. The dynamic scaling behavior of
the magnetization, Binder cumulant, height function, and
two-time correlation function is carefully analyzed, and a
domain-wall roughening process is observed. A strong loga-
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rithmic correction to scaling is detected inside the domain
interface. After taking into account the logarithmic correc-
tions to scaling, the dynamic scaling forms of different
physical observables are accurately verified, and the naive
measurements of the exponents 7,=0.915(8), d,=1.764(20),
and «=0.938(18) are refined to be ,=0.997(7), d,
=1.991(11), and @=0.994(8). We have also understood a
large part of the aging phenomena. A similar dynamic ap-
proach may be applied to the phase transitions of domain

PHYSICAL REVIEW E 79, 021107 (2009)

walls driven by external magnetic fields at the zero or low
temperature. The re-orientation dynamics of the magnetiza-
tion around the domain interface is also interesting.
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